Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 200: 116152, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364641

RESUMO

Green tides occurrence has increased in coral reefs, yet few reference values have been documented to support bloom management in these ecosystems. Here, we took advantage of recent Ulva green tides that occurred in New Caledonia to (i) identify the elements limiting the growth of Ulva spp. during these blooms; and (ii) validate the use of isotopic markers for identifying sources of nutrients that generated blooms. N/P ratios highlighted a stronger limitation of algae by phosphorus than by nitrogen on sites under oceanic influence, while the proportions of N and P were optimal for algal growth at sites where green tides occurred. Macroalgae highly exposed to sewage water was characterized by higher δ15N than macroalgae collected in areas exposed to synthetic inorganic fertilizers. From these results, we established a new set of threshold values for using δ15N in Ulva species as an indicator of nitrogen source type in coral reefs.


Assuntos
Alga Marinha , Ulva , Ecossistema , Recifes de Corais , Valores de Referência , Nitrogênio , Eutrofização
3.
FEMS Microbiol Ecol ; 76(2): 360-72, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21255052

RESUMO

Virus-prokaryote interactions were investigated in four natural sites in Senegal (West Africa) covering a salinity gradient ranging from brackish (10‰) to near salt saturation (360‰). Both the viral and the prokaryote communities exhibited remarkable differences in their physiological, ecological and morphological traits along the gradient. Above 240‰ salinity, viral and prokaryotic abundance increased considerably with the emergence of (1) highly active square haloarchaea and of (2) viral particles with pleiomorphic morphologies (predominantly spindle, spherical and linear shaped). Viral life strategies also showed some salinity-driven dependence, switching from a prevalence of lytic to lysogenic modes of infection at the highest salinities. Interestingly, the fraction of lysogenized cells was positively correlated with the proportion of square cells. Overall, the extraordinary abundance of viruses in hypersaline systems (up to 6.8 × 10(8) virus-like particles per milliliter) appears to be partly explained by their high stability and specific ability to persist and proliferate in these apparently restrictive habitats.


Assuntos
Plâncton/virologia , Células Procarióticas/microbiologia , Salinidade , Vírus/crescimento & desenvolvimento , Microbiologia da Água , Contagem de Colônia Microbiana , Ecossistema , Geografia , Microscopia Eletrônica de Transmissão , Filogenia , Plâncton/crescimento & desenvolvimento , Células Procarióticas/virologia , Senegal , Cloreto de Sódio , Vírus/isolamento & purificação , Vírus/ultraestrutura , Água/química
4.
FEMS Microbiol Lett ; 311(2): 113-8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20735486

RESUMO

Little is known about the ability of phages to successfully colonize contrasting aquatic niches. We conducted experimental cross-infections between viruses and prokaryotes from three tropical sites of West Africa, with distinct salinities: a freshwater reservoir, a marine coastal station and a hypersaline lake. A cellular poison-based method (potassium cyanide) revealed that the addition of native viruses (regardless of the water type) consistently stimulated viral production. Conversely, in all incubations conducted with allochtonous (non-native) viruses, their overall production was not promoted, which suggests a lytic failure. Prokaryotic heterotrophic production increased in fresh and marine water supplemented with native viruses, but not in the hypersaline water. These results point to the role of the viral shunt in low-salinity environments, where the release of bioavailable lysis products might be of high nutritional value for the noninfected prokaryotes. In contrast, in hypersaline water where glycerol is a major carbon and energy source for the heterotrophic community, dissolved organic matter (DOM) of lytic origin may represent a less important DOM source for prokaryotes. Finally, our results suggest that cosmopolitan phages capable of moving between biomes are probably rare in aquatic habitats, supporting the common idea that most wild phages are relatively limited in their host range.


Assuntos
Bacteriófagos/fisiologia , Especificidade de Hospedeiro , Células Procarióticas/virologia , Microbiologia da Água , Salinidade , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...